If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+40t+15=0
a = 16; b = 40; c = +15;
Δ = b2-4ac
Δ = 402-4·16·15
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{10}}{2*16}=\frac{-40-8\sqrt{10}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{10}}{2*16}=\frac{-40+8\sqrt{10}}{32} $
| I-6nI=6 | | 6d-10+5=5d-34= | | F(x)=2x^2-9x+10/2x^2-1x-15 | | -9.50x-0.05=10.5+1.05 | | V=3/4x3.14x8.3^3 | | 5(x+2)=10-3x2 | | 5x-9=-2(x+3) | | -4y+10=5y | | 7.35d=294 | | 7x^2=14x-56/9 | | 2x^2+1=0. | | 102-7d=11 | | 12=16^x | | 24÷7x=10 | | 1+x/5=6 | | w+46+34=23w+21 | | −(x+3)=2x−6 | | v+v=v+30 | | u-30+u=u+38 | | b+12+b-3=b+44 | | 3x+7=71 | | z=2-3 | | u+u-20=u+39 | | 3n+16=7n+16-4n | | z-44+z-17=z+29 | | x/4+10=2 | | y+y-25=y+42 | | -2g-16=4 | | b+b-36=b+30 | | 6x+(-9)=69 | | t+20+t+17=t+50 | | 2x+3x+6=19 |